
© 2013 Carnegie Mellon University

Understanding the Drivers
Behind Software Acquisition
Program Performance

Enabling Mission Success through
Improved Software Decision-Making

Andrew P. Moore
William E. Novak

April 10, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
10 APR 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Understanding the Drivers Behind Software Acquisition Program
Performance: Enabling Mission Success through Improved Software
Decision-Making

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

91

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Tar Pit

“Large-system programming has over the past decade been… a tar pit, and
many great and powerful beasts have thrashed violently in it. Most have
emerged with running systems—few have met goals, schedules, and
budgets. Large and small, massive or wiry, team after team has become
entangled in the tar. No one thing seems to cause the difficulty—any
particular paw can be pulled away. But the accumulation of simultaneous
and interacting factors brings slower and slower motion. Everyone seems to
have been surprised by the stickiness of the problem, and it is hard to
discern the nature of it. But we must try to understand it if we are to solve it.”

 —Frederick Brooks, The Mythical Man-Month

3

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
“At its very core, this acquisition business is not about contracts, testing,
acquisition strategies, plans, technology, finance, oversight, or any of the
other things one can learn about or make rules about. It's about people.”

 —Terry Little, Missile Defense Agency

4

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
Objectives
Introduce the Acquisition Archetypes and acquisition dilemmas

Show how programs can start to recognize, avoid, and resolve common
counter-productive behaviors in software acquisition and development

Influence how acquisition practitioners and leaders make decisions

Present a different way of approaching/resolving acquisition problems

5

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
Agenda

Introduction
Misaligned Incentives and Structural Dynamics
Social Dilemmas
Systems Thinking
Systems Archetypes
Acquisition Archetypes
Acquisition Dynamics
Learning Games for Acquisition
Breaking the Pattern
Solving Social Dilemmas
Conclusions and Summary

6

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
Did You Ever Wonder…

Why do acquisition programs believe it’s possible to make up schedule
by cutting corners on development?

Why do programs violate spiral development by doing the riskiest
development last?

Why do investments in failing acquisition programs continue long past
the point that makes economic sense?

Why is it that “Win/Win” partnerships degenerate for no apparent
reason?

Why do some of a program’s most critical risks or issues never make it
to the attention of the program manager?

Why, with advanced estimation models, do large programs
underestimate costs by up to 70%?

7

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
Why is Software-Intensive Acquisition So Hard?

Complex interactions between PMO, contractors, sponsors, and users
• The full chain of actions and their longer-term consequences is not clear

Limited visibility into real progress and status
• Hard to apply corrective actions when status is uncertain

Significant delays exist between applying changes and seeing results
• Difficult to control systems with long delays between cause and effect
• Examples: Reorganizing a department, Steering an aircraft carrier

Unpredictable and unmanageable progress and results
• Complexity of interdependencies has unintended consequences

Uncontrolled escalation of situations despite best management efforts
• Misaligned incentives can drive potentially conflicting behaviors

Linear partitioning is the standard approach to address large systems
• When systems have feedback between components that are partitioned, it

makes it difficult to see and address these interactions
Exponential growth of interactions as size grows linearly

8

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
…Because It’s a Complex, Dynamic System!

Organizational: Key issues in software acquisition are often management
and organization-related — not technical—and people mean feedback

• “No matter what the problem is, it’s always a people problem.”
—Gerald Weinberg

Complex Interactions: Interactions between acquisition stakeholders are
non-linear because of the presence of feedback

• What you do depends on what I do, which depends on what you do…

Non-linear Behavior: Feedback defies traditional mathematical analysis

Sensitivity to Initial Conditions: Results may vary greatly due to very
small differences in starting point(s)

Partitioning: Partitioning isn’t possible when there are complex
interactions between components

9

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Introduction
Can Systems Trap Us into Behaviors?

Inside a complex, dynamic system, people’s
actions can be at the mercy of that system’s
dynamics. Such patterns occur in real estate
cycles:

Since this is a loop, let’s draw it as
one:

Supply
Decreases

Price Drops

Demand
Increases

Demand
Decreases

Price
Increases

Supply
Increases

Delay
Delay

As price drops…

 demand increases (get a good deal)

 …and after a delay… (takes time to buy)

 supply decreases (not many houses left)

 price increases (supply and demand)

 demand decreases (too expensive now)

 …and after a delay… (more people must sell)

 supply increases (plenty of houses)

 and price drops… (supply and demand)

10

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Misaligned Incentives and
Structural Dynamics
“Incentives are misaligned—PMs and contractors are not necessarily
rewarded for decisions that lead to lower life cycle costs or provide a better
balance between cost and performance”

 —Defense Acquisition Performance Assessment,
 GEN Ronald Kadish (Ret.)

11

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
Misaligned Incentives

Structural reasons like feedback and delays aren’t the only causes for
acquisition failure—incentives play a key role as well.

Misaligned incentives occur when:
• Individual goals conflict with group goals
• Short-term goals conflict with longer-term goals

The result is that:
• Some group goals only succeed at the expense of individual goals
• Some longer-term goals can only succeed at the expense of short-term goals

Some acquisition programs are prevented from succeeding for structural
and incentive reasons—not poor work or lack of effort.

Misaligned incentives can force people to make impossible choices.
Take-away

12

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Misaligned Incentives
Misaligned Incentives in Acquisition
Risk: Low incentive to identify program risks if it can adversely affect personal standing

Defects: Incentives to find defects can result in the intentional insertion of defects

Schedule: Incentives to improve performance by meeting a set date can mean quality
processes are sacrificed to meet that date

Technology: Incentives to use risky, immature technology to achieve better system capability,
and give good experience to the contractor

Contracts: Incentives to drag out development on CP & T&M contracts to increase profits

Staffing: Incentives to slow efforts/stretch schedule if there’s no next project to move on to

Cancellation: Low incentive to cancel ailing programs if it’s not in interests of program staff

Scope: Low incentive for users to ask for only minimal system capability if it’s free to them

Misaligned incentives occur every day in every area of acquisition programs
Take-away

13

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
“Social traps are baited [with]… positive rewards which… direct behavior
along lines that seem right every step of the way, but nevertheless end up at
the wrong place.”

 —John Cross and Melvin Guyer, Social Traps

“Morality boils down to self-interest. People cooperate where their outcomes
are correlated.”

 —Robert Wright

14

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
The Prisoner's Dilemma
Two suspects are arrested by the police, who don’t have enough
evidence to convict either—so they separately offer each the same deal.
If one “rats” and the other stays silent, the rat goes free and his
accomplice gets 10 years. If both stay silent, then both get 6 months on a
minor charge. If each one “rats,” then each gets 5 years.

Each prisoner must choose to “rat” or
keep quiet. Each one is told that the
other won’t hear about him “ratting”
before the end of the investigation. What
should they do?

15

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
Prisoner’s Dilemma Payoff

Prisoner’s Dilemma
(Player 1, Player 2)

Player 1

Cooperate
(Silence)

Defect
(“Rat”)

Player 2 Cooperate
(Silence)

(0.5, 0.5)
1 year total

(0, 10)
10 years total

Defect
(“Rat”)

(10, 0)
10 years total

(5, 5)
10 years total

16

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
Social Dilemmas
What if we all could be better off, but no one has an incentive to change?
Dilemmas are all about cooperation—and there are two basic types:

The Tragedy of the Commons

• Someone wants a benefit that will cost everyone else
• Some are tempted by that benefit, but if all do, everyone is worse off.

Producing a Public Good

• Someone faces a near-term cost that would benefit everyone else
• Some try to avoid the cost, but if all do, everyone is worse off.

The “Tragedy of the Commons” is a multi-player version of the “Prisoners’ Dilemma”
Key Idea

17

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Social Dilemmas
The Tragedy of the Commons
The “Tragedy of the Commons” refers to a pasture area shared by farmers.

It works as long as you don’t graze too many cattle, so the grass can grow back.

One farmer might graze more cattle to make more money—but if everyone does
the same, the grass is destroyed, the cattle starve, and everyone loses.

Free access and unlimited demand for a finite resource dooms the resource
through exploitation.

The concept behind the Tragedy of the Commons is real, and can be seen in:
• Overfishing: Everyone wants to catch more fish—but if everyone does,

there will be no more fish
• Congestion: Everyone using a car because it’s more convenient creates

traffic jams—so it’s less convenient for everyone
• Polluting: It’s cheaper to pollute—but everyone else pays the price

“Individually optimal decisions lead to collectively inferior solutions.”
Key Idea

18

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Thinking
“We human beings do not see the larger system processes of which we
are a part.”

 —Barry Oshry, Seeing Systems

19

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Thinking
What is Systems Thinking?

Systems Thinking is a method for analyzing complex systems

Developed by Jay W. Forrester at MIT while modeling electrical feedback
• Also exists in economic, political, business, and organizational behaviors

Uses feedback loops to analyze common system structures that either
spin out of control, or regulate themselves

Helps identify a system’s underlying structure, and what actions will
produce which results (and when)

Systems Thinking teaches us that:
• System behavior is greater than the sum of component behaviors
• “Quick fix” solutions usually have side-effects that can make things worse
• True improvement comes from changing the underlying system structure

20

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Thinking
Causal Loop Diagrams (CLDs)

Depict qualitative “influencing” relationships (increasing or decreasing)
and time delays between key variables that describe the system

Show relationship direction by labeling them Same (+) or Opposite (-)
to indicate how one variable behaves based on the previous variable

Consist primarily of two types of feedback loops:

Increases Increases Decreases Increases

• Reinforcing – Changes to variables reinforce, moving in one direction

• Balancing – Changes to variables alternate, achieving equilibrium

R B

21

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Much unpredictability of systems is due to time delays

Time delays obscure the connections in cause-and-effect relationships
• Side-by-side causes and effects would be “smoking gun” evidence

People are poor at controlling systems with big time delays between
the cause and the effect

• Example: Over-steering a large ship that is slow to respond, so it
weaves back and forth

• Example: A temperature control on a low-BTU air conditioner that’s
slow to cool, so the temperature bounces between too hot and too cold

• Example: Can’t determine which surface, handshake, sneeze, or cough
caused you to get sick—so it’s hard to avoid catching something

This happens in companies and acquisition programs as well:
• Example: If the expected benefits of a reorganization or improvement

aren’t visible in a short time, it’s assumed that it didn’t help

Systems Thinking
Time Delays

22

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Thinking
Emergent Behavior
“The arising of novel and coherent structures, patterns and properties
during the process of self-organization in complex systems.”

• Prof. Jeffrey Goldstein, Adelphi University: Emergence

An emergent behavior appears when a number of entities interact in a
system, collectively producing new behaviors

Emergent behavior in systems manifests itself in different ways:
• Oscillation
• Escalation and decline
• Synchronization
• Thrashing

Examples of emergent behavior
• The ebb and flow of traffic, the flocking of birds, evolving patterns of

cities/suburbs, synchronized clapping, market sell-offs, ant foraging, etc.

The systems archetypes are all examples of emergent behavior.
Key Idea

• Deadlock
• Livelock
• Phase change
• Chaos

23

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Thinking
The Butterfly Effect
Complex systems can be highly sensitive to small changes in initial
conditions—producing results and behavior that appear to be random

• In short, two runs of the same system using similar starting conditions can
produce vastly different outcomes

The name The Butterfly Effect came from meteorologist Edward Lorenz,
who suggested that “a butterfly flapping its wings in Brazil could ultimately
produce a tornado in Texas.”

Examples of the Butterfly Effect:
• A change in an African animal virus is believed to have spread to human

beings and created the AIDs epidemic
• While the movements of a ball in a pinball machine are precisely governed

by physics, small variations in friction and mechanics make its path virtually
unpredictable

• The losses in the U.S. subprime mortgage sector depressed housing
markets globally, causing turmoil in international financial markets.

24

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes

“Whether or not what you do has the effect you want, it will have three at
least that you never expected, and one of those will usually be
unpleasant.”

 —Robert Jordan

25

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
What are the Systems Archetypes1?
We’re good at recognizing problems when they arise, and dealing with them—but
we don’t always recognize familiar problems if they look different.

If we don’t recognize the similarity of problems, we treat each one as if it’s new.

Over 10 systems archetypes have been identified which represent common patterns
of behavior that recur across many disciplines.

Each one tells a story that sounds all too familiar, but they share a common pattern:

• An action appears to be logical and promising—but in practice it has unintended
counter-productive effects to what was desired, or makes other things worse

System archetypes show the structures that lay underneath some of our most
challenging problems—structures that offer ways of resolving them.

 1 from Peter Senge, The Fifth Discipline: The Art and Practice of the Learning Organization, Doubleday, 1990.

26

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
Systems Archetypes -1

Fixes that Fail
• A quick fix for a problem has immediate positive results, but its

unforeseen long-term consequences worsen the problem.
• Example: Using credit cards to pay off debt
• Example: Stopping a course of antibiotics when you’re feeling better

Balancing Loop with Delay
• A system’s state is moving toward the desired state through repeated

action, but the delay raises doubts about its effectiveness.
• Example: Real estate cycles
• Example: Adjusting the temperature of a shower

Limits to Growth
• Initially rapid growth slows because of an unseen inherent capacity limit

in the system that worsens with growth.
• Example: Town stops growing when traffic becomes intolerable
• Example: Overpopulation and limited food production

 from Peter Senge, The Fifth Discipline: The Art and Practice of the Learning Organization, Doubleday, 1990.

27

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Fix
S

O

B

Problem
Symptom

R

Systems Archetype
“Fixes That Fail (Backfire)”

S

Unintended
Consequences

S

A quick Fix for a Problem Symptom
has immediate positive results, but
also has long-term Unintended
Consequences that, after a delay,
worsen the original Problem Symptom
as the Fix is used more often.

 from Daniel H. Kim, “System Archetypes: Vols. I, II, and III. Pegasus Communications, 1993.

28

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
Systems Archetypes -2

Shifting the Burden ("Addiction")
• An expedient solution temporarily solves a problem, but its repeated

use makes it harder to use the fundamental solution.
• Example: Dependence on coffee, rather than sleep, to stay awake
• Example: Welfare acting as a substitute for good employment

Accidental Adversaries
• Two cooperating parties destroy their relationship through escalating

retaliations for perceived injuries.
• Example: Initially happy marriage ultimately leads to divorce
• Example: Conflict between short-term sales & long-term research goals
• Example: Failed mergers—British Airways/USAir, Daimler-Chrysler

Escalation
• Two parties compete for superiority, with each escalating its actions to

get ahead.
• Example: The nuclear arms race between the U.S. and the U.S.S.R.
• Example: Price wars between adjacent competing stores

29

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetype
“Shifting the Burden”

Problem
Symptom

Side-Effect

S

B1

O

Symptomatic
Solution

S

R

O

O

B2

S

Fundamental
Solution

Delay

A Symptomatic Solution temporarily
solves a Problem Symptom, which
later recurs. Its repeated use over the
longer term has Side-Effects that make
it less and less feasible to use the
more effective Fundamental Solution—
trapping the organization into using
only the Symptomatic Solution.
Impatience with the delay makes the
organization choose the Symptomatic
Solution in the first place.

 from Daniel H. Kim, “System Archetypes: Vols. I, II, and III. Pegasus Communications, 1993.

30

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
Systems Archetypes -3

Drifting Goals
• A gradual decline in performance or quality goals goes unnoticed,

threatening the long-term future of the system.
• Example: Cutting the volume of soda in a can & selling it for the same price
• Example: Gradually replacing quality ingredients with artificial substitutes

Growth and Underinvestment
• Investments in a growing area aren't made, so growth stalls, which then

rationalizes further underinvestment.
• Example: People’s Express airline collapse due to poor customer service
• Example: Learning the violin on your own, with disheartening progress

 from Daniel H. Kim, “System Archetypes: Vols. I, II, and III. Pegasus Communications, 1993.

31

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
Systems Archetypes -4

Success to the Successful
• When two parties compete for a limited resource, the initially more

successful party receives more resources, increasing its success.
• Example: BETAMAX vs. VHS
• Example: QWERTY keyboard layout
• Example: PC/Windows vs. Macintosh

Tragedy of the Commons
• A shared resource is depleted as each party abuses it for individual

gain, ultimately hurting all who share it.
• Example: Disappearance of sardines in Monterey Bay from overfishing
• Example: Congestion on urban highways

32

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Conclusions and Summary
Uses of System Archetypes

Identify failure patterns as they develop
• Realize there is a problem—do you see an archetype or incentives?

Single out root causes
• Diagnose the fundamental root causes of problems—not just symptoms

Engage in “big picture” thinking
• See the larger system, instead of just the piece you’re in

Promote shared understanding of problems
• Share a model of the problem with others who can help to solve it

Find interventions to break out of ongoing pattern
• Fix the pattern using leverage points from the structure

Avoid future counter-productive behaviors
• Prevent the most common traps simply by knowing about them

33

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
We’re “…focused on the little, tiny swells and waves on the surface of the
ocean. But in fact, most of the big things affecting the ocean are these
currents underneath. They're what's moving the water.”

 —John Sides, GWU

34

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
What are Acquisition Archetypes?

Acquisition archetypes are modeled on the systems archetypes

Acquisition archetypes are patterns of behavior seen time and again on
actual programs that are counter-productive and undermine progress

Acquisition archetypes depict the underlying structures of the
behaviors that occur throughout acquisition organizations

• Each causal loop diagram tells a familiar, recurring story
• Each describes the structure that causes the dynamic

Acquisition Archetypes are used to:
• Identify failure patterns as they develop (recognition)
• Single out root causes (diagnosis)
• Engage in “big picture” thinking (avoid oversimplification)
• Promote shared understanding of problems (build consensus)
• Find interventions to break out of ongoing dynamics (recovery)
• Avoid future counter-productive behaviors (prevention)

35

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
Acquisition Archetypes -1

“Happy Path” Testing
• Schedule pressure drives "making up" lost time, which can cause

shortcuts in quality (like testing, peer reviews, using coding standards…)

Firefighting
• Rework to fix defects in the current release diverts resources from the

early design of the next release—injecting even more defects into it

Brooks’ Law
• Adding new people to a late software project to speed development

sounds attractive—but in reality causes additional delays

36

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Fix
S

O

B

Problem
Symptom

R

Systems Archetypes
“Fixes That Fail”

S

Unintended
Consequences

S

A quick Fix for a Problem Symptom
has immediate positive results, but
also has long-term Unintended
Consequences that, after a delay,
worsen the original Problem Symptom
as the Fix is used more often.

based on the “Fixes that Fail” systems archetype

37

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Schedule
Pressure

Rework
S

O

B

Available
Resources O

Quality O

Errors

O

O

R

As schedule
pressure

increases…

…quality suffers… …and
errors

increase…

…requiring
more

rework…

…which reduces
errors.

However, rework
consumes resources…

…which
increases
schedule

pressure…

…and
the cycle
repeats

and
worsens.

Acquisition Archetypes
“Happy Path Testing” (i.e., Sacrificing Quality)

As schedule pressure
increases, processes are
shortcut, quality suffers, and
errors increase—requiring
more re-work. However, re-
work consumes resources,
which increases schedule
pressure, and the cycle
repeats and worsens.

based on the “Fixes that Fail” systems archetype

38

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Resources
Dedicated to

Current
Release

O
O

B

Resources
Dedicated to
Next Release O

Early
Development
Activities on
Next Release

Design
Problems in

Current
Release

O
S

R

Acquisition Archetypes
“Firefighting”

Problem
Gap

Tolerance
for

Design
Problems

S

S

from “Past the Tipping Point: The Persistence of Firefighting in Product Development,” Repenning, Goncalves, & Black, 2001.

If design problems in the current
release are higher than the tolerance
for them, then more resources must be
dedicated to fix them. This reduces
problems, but now fewer resources
can work on the next release. This
undermines its early development
activities which, after a delay,
increases the number of design
problems in the next release.

based on the “Fixes that Fail” systems archetype

39

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
Acquisition Archetypes -2

The “Bow Wave” Effect
• Riskier tasks planned for an early development spiral are delayed in

favor of simpler tasks—increasing risk by leaving less time, less
budget, and less flexibility to address issues

Longer Begets Bigger
• Large program development causes lengthy schedules—during which

technology and operational environment changes cause scope
changes, resulting in even longer schedules and higher cost

Robbing Peter to Pay Paul
• By giving overspent programs extra funding taken from those that are

underspent, overspenders succeed, underspenders fail, and
overspending is perpetuated

40

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Systems Archetypes
“Shifting the Burden”

Problem
Symptom

Side-Effect

S

B1

O

Symptomatic
Solution

S

R

O

O

B2

S

Fundamental
Solution

Delay

A Symptomatic Solution temporarily
solves a Problem Symptom, which
later recurs. Its repeated use over the
longer term has Side-Effects that make
it less and less feasible to use the
more effective Fundamental Solution—
trapping the organization into using
only the Symptomatic Solution.
Impatience with the delay makes the
organization choose the Symptomatic
Solution in the first place.

 from Daniel H. Kim, “System Archetypes: Vols. I, II, and III. Pegasus Communications, 1993.

41

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Risky tasks planned for an early spiral
to reduce risk are postponed to a later
spiral, making near-term performance
look better. This increases risk in
subsequent spirals by delaying
required risky development for which
there is now less available schedule to
address potential issues, and less
flexibility in the system to
accommodate changes needed to
integrate the new capability.

Acquisition Archetypes
“Bow Wave Effect”

Schedule
Pressure

System
Risk

S

Other
Design

Decisions
Made

B1

O

Development
of Simpler

Functionality S

R1

O

System
Modifiability

O

Ability to
Integrate

New
Capability

S
S

R2

based on the “Shifting the Burden” systems archetype

O

B2

S Development
of Complex

Functionality

S

42

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
Acquisition Archetypes -3

Everything for Everybody
• Building common infrastructure must reconcile competing requirements into

one system—but this drives up cost, schedule, risk, and complexity, driving
user programs away

Underbidding the Contract
• Underbidding contracts often results in winning them—and when problems

occur more time and money are given, which encourages other contractors
to do the same

Staff Burnout and Turnover
• Increasing pressure and long hours eventually lead to burnout and

turnover—which reduce productivity and further increase schedule pressure

43

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
Acquisition Archetypes -4

PMO vs. Contractor Hostility
• The seemingly “win-win” relationship between PMO and contractor

degenerates when one party inadvertently harms the other—who then
retaliates

Feeding the Sacred Cow
• Management ignores warnings of program failure due to uncertainty, and

continues on—often long after it is no longer economically defensible

Shooting the Messenger
• Managers who report bad news to executives are not rewarded, but are

often punished—making other managers even more reluctant to report
issues

44

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Archetypes
Did You Ever Wonder…

Why do acquisition programs believe it’s possible to make up schedule
by cutting corners on development?

Why do programs violate spiral development by doing the riskiest
development last?

Why do investments in failing acquisition programs continue long past
the point that makes economic sense?

Why is it that “Win/Win” partnerships degenerate for no apparent
reason?

Why do some of a program’s most critical risks or issues never make it
the attention of the program manager?

Why, with advanced estimation models, do large programs
underestimate costs by up to 70%?

The Bow Wave Effect

Feeding the Sacred Cow

PMO vs. Contractor Hostility

Shooting the Messenger

Underbidding the Contract

Firefighting

45

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” Animation

46

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“The Bow Wave Effect”
Animation

47

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Dynamics
“... We are pawns in a game whose forces we largely fail to
comprehend.”

 —Dr. Daniel Ariely, Duke University

48

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

5. As the schedule
slips, one program
decides to leave the
joint program and
develop its own
custom software.

6. With one stakeholder
gone, the amortized costs
for the other programs
increase further—and
another program leaves.

1. A JPO PM has six
stakeholder programs
planning to use their
joint infrastructure
software…

2. …but each program
demands at least one
major feature be added
to the software just
for them.

4. The additional design
changes and coding
significantly increase
total cost, schedule,
complexity, and risk.

Acquisition Dynamics
Joint Programs

3. The JPO agrees to the
additional requirements, for
fear of losing stakeholders
(who could build custom software).

7. As cost escalates
and schedules lengthen,
participation in the
joint program unravels
and collapses.

This scenario aggregates
three SEI software-reliant
system acquisition ITAs
conducted in 2006-2009.

49

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Dynamics
Research Approach -1

Firefighting: If design problems are
found in the current release, more
resources must be used to fix them.
This reduces problems, but now less
work is done on the next release.
This undermines its early
development work, and increases
design problems in the next release.

Fix

S

O

B

Problem
Symptom

R

S

Unintended
Consequences

S

General
Qualitative Model

Acquisition
Problem Model

Independent Technical
Assessment (ITA) Data

Detailed examinations of
challenged programs
with interviews,
document reviews, and
code analysis

Acquisition
Qualitative Model

Deep
Understanding of

Dynamic
Acquisition
Behavior

Model-Based
Simulation of

Potential Solutions

Basis for
Acquisition
Instructional
Simulations

50

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Dynamics
Research Approach -2

Build models of Acquisition Archetypes to create executable simulations of
significant adverse acquisition program behaviors

• Turn existing software acquisition domain expertise into a more usable form

Use acquisition models to analyze known adverse software acquisition dynamics,
and test proposed solutions

• Apply new and known solutions to solving recurring dilemmas in acquisition

Use experiential learning from hands-on simulations to give DoD acquisition staff
a deeper understanding of acquisition dynamics to help make better decisions

• Understand common side-effects of decisions that lead to poor performance
• Let acquisition staff gain experience through education—not costly mistakes

Build foundation acquisition model to test value of future solution approaches
• Qualitatively validate new approaches before applying them to programs

51

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
“What they did at first was a proof of concept, a quick and dirty prototype, and
when they tried to scale it up, there were indications that it might not be
possible…”

—Acquisition Program Lead

52

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Acquisition Dynamics
The Evolution of a
“Science Project”

This scenario aggregates
five SEI software-reliant
system acquisition ITAs
conducted in 2006-2009.

2. Prototype is
deployed on small
scale, and is well
received.

1. Project begins
as small informal
effort to build
prototype & prove
concept.

3. Warfighters and
field commanders
demand more
capability, broader
deployment, faster
response.

4. Project staff is
diverted to field
support, so
development
progress slows.

5. As system
grows, poor
architecture,
documentation, &
code quality cause
poor reliability,
performance, &
usability.

6. Project
infrastructure,
processes, & staff
not able to scale
up to production
development.

7. New program
office unwilling to
discard prototype
code due to field
deployment
pressures.

8. New versions of
the system can’t
be deployed with
needed capability,
robustness, and
performance.

9. Warfighters wait
years for a new
system to be built
from scratch.

53

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
The Evolution of a “Science Project”

• This behavior has been recognized in many different programs
• Acquisition executives have seen this dynamic play out in their portfolios

• Model was developed using VenSim system dynamics modeling

package

• Technical Report: “The Evolution of a Science Project: A Preliminary

System Dynamics Model of a Recurring Software-Reliant Acquisition
Behavior”

54

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
The Evolution of a “Science Project”

Science Project (SP) Sector Production Development (PD) Sector

d

undiscovered
quality issues

discovered quality
issues (PD) schedule

pressure (PD)

R

Quality-Driven
Development

QA work
to do

initial
development
work to do

-

+

+

released
work

+

+

rework
to do

+

+

discovery of
prototype quality

issues
+

+

decision
to reuse

prototype

-

+

remaining
work to do

+
+

+

injection of
quality issues

+

scheduled
completion
date (PD)

-

Schedule
Pressure

Magnified
Ripple Effect

+

development
scope (PD)

+

rework
rippling

+

+

schedule
pressure (SP)

features
developed

undiscovered
quality issues

discovered quality
issues (SP)

rigor of QA
processes

applying pressure
to workers

-B
Schedule and

Feature-Driven
Development -

staffing of
rework

staffing of
development work

-

+
-

+

-

+

development
scope (SP)

+

-
+

scheduled
completion
date (SP)

-

55

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Key Preliminary Findings

56

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Assumption

Applying pressure to workers developing SP results in undiscovered rework
 SP Rework to be Discovered (Applying Pressure to Workers)

60

30

0
6 6 6 6 65 5 5 5 54 4 4 4 43 3 3 3 3 32 2

2

2 2 21 1

1

1 1 1
0 40 80 120 160 200 240 280 320 360 400

Time (Weeks)

Ta
sk

s

Hi Pressure Applied 1 1 1 1
Med-Hi Pressure Applied 2 2 2 2
Med Pressure Applied 3 3 3 3
Med-Lo Pressure Applied 4 4 4 4
Lo Pressure Applied 5 5 5 5
No Pressure Applied 6 6 6 6 6

57

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Key Preliminary Findings -1

High pressure, or moderate pressure for long periods, can lead to a “tipping point”

PD Discovered Quality Issues (Applying Pressure to Workers)
200

100

0
6

6

6 6 65
5

5 5 54

4 4
4 43 3

3 3
3

2 2

2
2 2 2

1 1

1
1 1 1

0 40 80 120 160 200 240 280 320 360 400
Time (Weeks)

T
as

ks

Hi Pressure Applied 1 1 1 1
Med-Hi Pressure Applied 2 2 2 2
Med Pressure Applied 3 3 3 3
Med-Lo Pressure Applied 4 4 4 4
Lo Pressure Applied 5 5 5 5
No Pressure Applied 6 6 6 6 6

58

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
The Tipping Point in Evolution of a Science Project

• Accumulating rework creates a dangerous feedback
dynamic

• “Firefighting” due to rework is a key underlying element

• Key drivers in reaching the “tipping point” are:

a) pressure on developers
b) the degree of “ripple effect”
c) the emphasis on schedule and features vs. quality
d) the timing of the transition from science project to production development

59

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Key Preliminary Findings -2

Placing modest pressure on developers for limited periods shortens
schedule
• VenSim optimization shows that placing pressure at a low level is optimal with

respect to reducing project duration
• By allowing periods of pressure, followed by periods of relaxation, the

program might:
• Limit worker burnout
• Perform better regarding schedule

60

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Key Preliminary Findings -3

The tipping point contributes to the “90% Done” Syndrome

Percentage Complete (Applying Pressure to Workers)
100

50

0
6

6

6 6 6

5

5

5 5 5

4 4

4

4 4

3 3

3
3 3

2 2

2
2

2
2

1 1

1
1

1
1

0 40 80 120 160 200 240 280 320 360 400
Time (Weeks)

Pe
rc

en
ta

ge

Hi Pressure Applied 1 1 1 1
Med-Hi Pressure Applied 2 2 2 2
Med Pressure Applied 3 3 3 3
Med-Lo Pressure Applied 4 4 4 4
Lo Pressure Applied 5 5 5 5
No Pressure Applied 6 6 6 6 6

61

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Key Preliminary Findings -4

The transition from science project to production effort should be made early
• A late transition increases the amount of undiscovered rework that is transferred

PD Discovered Quality Issues (Scoping the SP Effort)
200

150

100

50

0
4

4

4 4 4 4 43

3

3 3
3

3
3

2 2

2

2
2 2

2 2

1 1 1 1

1

1

1

1

0 40 80 120 160 200 240 280 320 360 400
Time (Weeks)

Ta
sk

s

Hi Feature SP Scope 1 1 1 1 1 1
Med Feature SP Scope 2 2 2 2 2 2
Med-Lo Feature SP Scope 3 3 3 3 3
Lo Feature SP Scope 4 4 4 4 4 4

62

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Key Preliminary Findings -5

Throwing away the prototype results in better program performance
• However, very early transition or evolutionary development may also be viable

PD Discovered Quality Issues (Reuse SP Prototype?)
200

150

100

50

0
2 2 2

2 2

2 2 2 2 2 21 1 1

1

1

1

1 1 1 1
1

0 40 80 120 160 200 240 280 320 360 400
Time (Weeks)

Ta
sk

s

Reuse at Med SP Scope 1 1 1 1 1 1 1
Decision Not to Reuse 2 2 2 2 2 2 2

63

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Full Simulation Model: The SP Sector

SP Developed
Code

SP Discovered
Quality Issues

SP
Developers

SP prototype
quality issues

per developer quality
issue injection rate

SP developing
code

SP injecting
quality issues

SP Schedule
Pressure

nominal per reworker
defect repair rate

SP
Reworkers

SP reallocating
dev to rew

desired reworker
reallocation number

SP prototype quality
issues target

+

actual quality
issues over

target

time to correct
quality

+

-

actual reworker
reallocation number

+

SP reworking
success

+

+

<SP developing
code>

indicated SP
completion date

+
SP Scheduled

Completion Date
SP adding to

schedule

SP declared
finished

SP Flexibility of
Deadline

B1

Quality-Driven
Rework

SP Features
to be

Developed

SP Features
Developed

SP developing
features

+

+

average KSLOC
per Feature

-

B2
Schedule and

Feature-Driven
Development

SP rigor of QA
processes

-

+

-

indicated per
developer

productivity

<normal
schedule
pressure>

B4

Short-term Pdy
Gains from Pressure

SP User
DemandSP increasing

demand

+

indicated demand

+

+

R1

Escalating User
Demand

+

innovation level

SP Undiscovered
Quality Issues

SP discovering
quality issues

SP reworking
failure

quality issue
repair quality

nominal quality issue
discovery rate

-

SP releasing
code

SP Released
Code

final prototype
quality<SP Discovered

Quality Issues>

SP project
over schedule

+

SP Worker
BurnoutSP increasing

worker burnout -

SP User
Satisfaction

SP increasing
satisfaction

indicated
satisfaction

+

+

B3
Moderating User

Satisfaction

overage switch

demand switch

satisfaction
switch

-

pressure multiplier due
to satisfaction

+

pressure multiplier
due to demand

+

+

R2

Worker Burnout
from Pressure

applying
pressure to

workers

SP Project
DurationSP Adding to

Project Duration

<SP rigor
of QA

processes>

<SP declared
finished>

worker
pressure
fraction

Worker Schedule
Pressure

+

-

64

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Full Simulation Model: The PD Sector

PD
Development

Work
Remaining

PD QA Work
Remaining

PD Discovered
Quality Issues

PD Work
Released

PD initially
completing work

PD discovering
quality issues

PD reworking
PD approving work

PD
scope

QA process
rate

+

fraction discovered
to require change

ripple
effects

+

PD known work
remaining

+ <PD Discovered
Quality Issues>

PD Schedule
Pressure

perceived PD
completion time

+

+

SP Rework to
be Discovered

discovering SP
quality issues

inheriting SP rework

Initializing
Production

Development

<SP
Undiscovered

Quality
Issues>

<SP
Discovered

Quality
Issues>

SP rework
discovery
fraction

SP rework
discovery
base rate

+

B5

Assured quality
and release

R3

Quality-Driven
Development

+

R4
PD Schedule

pressure magnified
ripple effect

<PD discovering
quality issues>

PD scope
due to SP<SP Features

Developed>

+

QA resource
rate

ID resource rate

RW resource rate

+

<PD known work
remaining>

+

ripple effect
strength

Total
project
work

PD Scheduled
Completion

Date
PD adding to

schedule

PD Flexibility
of Deadline

PD Flex
Deadline

switch

indicated PD
completion date

<SP declared
finished>

Work Fraction
not released

PD Project
Duration

PD adding to
project duration

available PD
completion time

+

<PD known work
remaining>

<PD QA Work
Remaining>

percent
complete

<time to
reallocate>

<time to
reallocate>

<time to
reallocate>

+

65

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary

66

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

The Evolution of a Science Project
Summary

Key preliminary findings from “The Evolution of a Science Project”:
• Undiscovered rework in a Science Project can lead to a “tipping point”
• Placing modest pressure on developers for limited periods shortens schedule
• The tipping point contributes to the “90% Done” syndrome
• The transition from ‘science project’ to production effort should be made early
• Throwing away the prototype results in better program performance

We can build on prior work in static models by developing interactive, executable
models of key acquisition dynamics

• Turn existing software acquisition domain expertise into a more usable form
• Model complex dynamic interactions that we can’t fully comprehend otherwise

• Good models produce key insights and raise important questions

The “I Already Knew That” effect
• Domain experts may say “I already knew that” about model results
• It’s easier to point out something as obvious after it’s been explained

67

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Learning Games for Acquisition
“Hear and forget;
 See and remember;
 Do and understand.”

 —Chinese proverb

68

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Learning Games for Acquisition
Why Learning Games?
Inexperienced Acquisition Staff

• Acquisition staff often have inadequate experience in decision-making
• Well-intentioned decisions are undermined by adverse side-effects
• Poor acquisition management has major cost, schedule, and quality impacts

Conventional Training is Limited
• Conventional training has been shown to be ineffective in preparing decision-makers

for dynamically complex domains

Learning by Doing
• Give acquisition staff a chance to learn how acquisition programs really behave,

without risking an actual program

Games and Simulations Teach Better
• [Cordova 1996, Ricci 1996] found that computer games and simulations enhance

learning and understanding in complex domains
• “The hands-on learning model will be incredibly helpful to the DoD program offices”

—SEI Technology Forum attendee

Improved Learning Outcomes
• [Mayo 2007] found learning doubled for classes with interactive learning vs. only

lecture

69

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Learning Games for Acquisition
“Firefighting” Interactive Simulation

~~mber·of-worl<ers 8 Workers I
defect-injection-probability 10 %

5 columns

grid-size-y 5 rows I
quality-threshold 40 Def ects/KSLOC

II developer-reworl<er-ratio

100% gives all developers
0% gives all reworkers

Developed Code

5625

fix-most-severe-defects-first?

198 SLOC/month

Derect Density vs. Quality Threshold

:.c-----
0 Time 895

Developers vs. Reworkers

895

• Defect Density

0 Quahty Threshold

• Developers

• Reworl<ers

Original Schedule vs. Rebaselined Sc ...
6140 Ooriginal

~ . Rebaselined

i/
0

0 Time 895

Software Engineering Institute I CamegieMellon

•

70

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Learning Games for Acquisition
“Bow Wave Effect” Interactive Game

I large/low I Large/Hit>

D EJ
I Medium/Low I Medium/Med I Medlum/Hioh

[] EJ L[J
II Small/Low

D
Effort Spent II Percent of Work Done I %Coverage J lcove1·age
n II 22.ss1 1 17.2 6s

Effort Spent c:overaoe -
100 100

1! " " "' ~ £ .. > ,g 8

0 ol
0 0

•
_ SGftware Engineering Institute J CarnegieMellon

71

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern

“You cannot apply a technological solution to a sociological problem.”
 —Edwards’ Law

“A clever person solves a problem. A wise person avoids it.”
 —Albert Einstein

72

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Managing the Acquisition Archetypes -1
If you’re caught in a storm at sea,
there may be little you can do to:

• Stop the storm, or even
• Get out of the storm

…But there are:

1. Things you can do beforehand to avoid it or minimize its impact, and
2. Things that you can do during the storm to help you weather it.

By showing the underlying structure of a dynamic, archetypes show where
best to apply leverage to slow or stop it.

-1

73

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Managing the Acquisition Archetypes -2
Once a recurring behavior has been characterized in a causal loop
diagram, here are some key techniques for managing it:

• Reverse the direction of the archetype
— Make negative dynamics positive ones by running them backwards

• Slow down unwanted reinforcing loops
— “When you’re in a hole, stop digging”

• Accelerate desirable reinforcing loops
• Change the limit that a balancing loop is stabilizing around

— Change the equilibrium value to something more acceptable
• Shorten the duration of a delay

— Make it easier to manage by making causeeffect more evident
• Find leverage points where a small effort can have a large effect
• Look for misaligned incentives and try to align them

Each systems archetype has specific interventions for addressing it.

Knowing about these common dynamics is the best way to prevent them.

74

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Resources
Dedicated to

Current
Release

O
O

B

Resources
Dedicated to
Next Release O

Early
Development
Activities on
Next Release

Design
Problems in

Current
Release

O
S

R

Breaking the Pattern
Managing “Firefighting”

Problem
Gap

Tolerance
for

Design
Problems

S

S

from “Past the Tipping Point: The Persistence of Firefighting in Product Development,” Repenning, Goncalves, & Black, 2001.

Fix: Admit that diverting resources to
fix bugs only fixes symptoms

Fix: Commit to fixing the real problem,
with good estimates and more staff

Fix: Revise the plan/schedule

Prevent: Don’t invest in new methods if
you’re already resource-constrained.

Prevent: Do resource planning across
the entire project

based on the “Fixes that Fail” systems archetype

75

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Managing “PMO vs. Contractor Hostility”

Fix: Break the escalation—one side
must credibly commit to restoring trust

Prevent: Good communication is key—
this dynamic only happens through
poor communication

Prevent: PMO must “walk the talk” of
“Trust, but verify”

based on the “Accidental Adversaries” systems archetype

76

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Solving Social Dilemmas

“Most [social traps]… are widely recognized to be genuine social
problems, but the inclination to look at them as unrelated phenomena has
obscured the possibility that similar sorts of solutions may be available
across the board.”
 —John Cross and Melvin Guyer, Social Traps

77

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -1

 from Cross and Guyer, Social Traps, University of Michigan Press, 1980.

Resolving the “Tragedy of the Commons”:
• Authority: Designated authority regulates the good, restricts overusage

• May be difficult and unpopular to enforce a mandate across services

78

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -2

Resolving the “Tragedy of the Commons”:
• Privatization: Converts shared ownership to private ownership

• Each participant has a strong incentive to care for what they own
• But privatization defeats the point of cooperation—causes “siloed” solutions

79

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -3

Resolving the “Tragedy of the Commons”:
• Altruistic Punishment 2: Participants can penalize uncooperative partners

• Significantly increases cooperation when used
• Cost of using penalty discourages overuse, making it self-correcting

 2from Fehr and Gachter, “Altruistic Punishment in Humans,” Nature, 2003

80

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -4

Motivational: Make people want to behave better
• Set Expectations/Reciprocity: “If someone else does it, then I will, too”
• Awareness: Raise awareness so that everyone knows how they should act
• Build Trust: Let participants prove their trustworthiness so all are willing to

cooperate
• Pulling Out: Leaving the group if a partner defects sends a message to

others

 from Cross and Guyer, Social Traps, University of Michigan Press, 1980.

81

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -5

Strategic: Give people some reason to behave better
• Reputation: Build public reputations based on past performance to boost

confidence
• Order: Avoid a precedence order for using the resource, encouraging

equality of use

 from Cross and Guyer, Social Traps, University of Michigan Press, 1980.

82

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Solving Social Dilemmas -6

Structural: Change the rules so that people must behave better
• Authority: Designate a leader/authority to regulate the use of the good
• Privatization: Privatize the good so that each person pays for their use
• Rewards and Punishment: Create clear rules, rewards, and penalties for

behaviors
• Reward the Group: Reward people for group, rather than individual,

success
• Altruistic Punishment: Allow participants to punish those who don’t

cooperate
• Assurance Contract: Cooperate only if enough others also commit to do so
• Small Groups/Communities: Small groups are more willing to “do it for their

team”
• Exclusion Mechanism: Find a way to exclude “free riders” from access
• Merging Free Riders: Buy out the free riders so they have no incentive to

free ride

 from Cross and Guyer, Social Traps, University of Michigan Press, 1980.

83

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Breaking the Pattern
Sample Solutions to “Freeriding”
Build the cost of the infrastructure into the cost of other things

• Example: Malls pay for restrooms and lighting by billing stores, who bill customers

Keep people who don’t contribute to the infrastructure from using it
• Example: Satellite TV scrambles signals to exclude those who don’t pay
• Example: Tollways

Formalize ownership rights
• Example: Buffalo, whales neared extinction because they weren’t privately owned

Have interested users pool their resources, and share results
• Example: Private research consortiums share results with their contributors

84

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
“If we want to change people's behavior, then we have to create
circumstances in which people are likely to act virtuously… If we think
about reforming people's character, we're engaged in a futile pursuit.”

 —Randy Cohen, “The Ethicist,” New York Times

85

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
The Big Ideas -1
Lasting improvement to a system's behavior comes from changing the
underlying system structure.
People are poor at controlling systems with large time delays between the
cause and effect, because they obscure the connection between the two.
Diagrams of archetypes show the structure that lays beneath the visible
problems, pointing out "leverage points" to help resolve them.
The ways people devise to exploit policies are themselves “emergent
behaviors” that cannot be predicted from the rules of the system.
Understanding and changing the misaligned incentives at work beneath
acquisition problems is key to improving program performance.

86

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
The Big Ideas -2
Acquisitions fail primarily for non-technical reasons

• Organizational, management, and cultural issues dominate
• “Technology has gotten ahead of our organizational and command

capabilities in many cases”

Misaligned incentives drive counter-productive behaviors
• Programs put their own good ahead of other programs
• Programs put their good ahead of their service’s good
• Programs place short-term considerations ahead of longer-term ones

Understanding the problem is the first step toward solving it
• If these problems were easy to solve, they wouldn’t still be plaguing us
• There is no simple boilerplate answer—but there are solutions

87

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
The Big Ideas -3
Seemingly simple systems produce unexpectedly complex behaviors

• New behaviors can emerge from interactions among components

Small changes in initial inputs drive big changes in system results
• Minor incidents can escalate into major catastrophes

— PMO vs. Contractor Hostility (Accidental Adversaries)
— Robbing Peter to Pay Paul (Success to the Successful)

Assumptions contribute to failing acquisitions
• Assumptions about others predispose you to behaving in certain ways
• Articulate underlying assumptions that contribute to misaligned incentives

Lack of trust can degenerate into turf wars and a “death spiral”
• If “individual/team gain” trumps the “program’s good,” bad outcomes result

88

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
For Additional Information
SEI Report: “The Evolution of a Science Project: A Preliminary System Dynamics
Model of a Recurring Software-Reliant Acquisition Behavior”
SEI Report: “Success in Acquisition: Using Archetypes to Beat the Odds”
SEI Blog: “Themes Across Acquisition Programs”: Parts 1-4
Website: http://www.sei.cmu.edu/acquisition/research/archetypes.cfm
Download all twelve:

• PMO vs. Contractor Hostility
• Underbidding the Contract
• Everything for Everybody
• The Bow Wave Effect
• Brooks' Law
• Firefighting
• "Happy Path" Testing
• Longer Begets Bigger
• Shooting the Messenger
• Feeding the Sacred Cow
• Staff Burnout and Turnover
• Robbing Peter to Pay Paul

89

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Summary and Conclusions
Joint Program Acquisition Experience Wanted!
We are analyzing the dynamic organizational behavior of joint and joint-interest
programs as part of an ongoing research project.

We are conducting group modeling workshops to elicit key joint program
behaviors, and are using the information to build a system dynamics model.

If you’d be interested in participating in a workshop, or collaborating with us in
other ways, please contact:

William E. Novak
Senior Member of Engineering Staff
Office: 412.268.5519
Email: wen@sei.cmu.edu
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

90

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

© 2013 Carnegie Mellon University
This material is based upon work supported by the U.S. Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States
Department of Defense.
NO WARRANTY
THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE
ENGINEERING INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.
This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

91

Software Technology Conference
April 10, 2013
© 2013 Carnegie Mellon University

Softvvare Engineering Institute CarnegieMellon

•
= SGftware Engineering Institute I CarnegieMellon

	Understanding the Drivers Behind Software Acquisition Program Performance
	Slide Number 2
	Slide Number 3
	Introduction�Objectives
	Introduction�Agenda
	Introduction�Did You Ever Wonder…
	Introduction�Why is Software-Intensive Acquisition So Hard?
	Introduction�…Because It’s a Complex, Dynamic System!
	Introduction�Can Systems Trap Us into Behaviors?
	Slide Number 10
	Social Dilemmas �Misaligned Incentives
	Misaligned Incentives�Misaligned Incentives in Acquisition
	Slide Number 13
	Social Dilemmas�The Prisoner's Dilemma
	Social Dilemmas �Prisoner’s Dilemma Payoff
	Social Dilemmas�Social Dilemmas
	Social Dilemmas �The Tragedy of the Commons
	Slide Number 18
	Systems Thinking�What is Systems Thinking?
	Systems Thinking�Causal Loop Diagrams (CLDs)
	Systems Thinking�Time Delays
	Systems Thinking�Emergent Behavior
	Systems Thinking�The Butterfly Effect
	Slide Number 24
	Systems Archetypes�What are the Systems Archetypes1?
	Systems Archetypes�Systems Archetypes -1
	Systems Archetype�“Fixes That Fail (Backfire)”
	Systems Archetypes�Systems Archetypes -2
	Systems Archetype�“Shifting the Burden”
	Systems Archetypes�Systems Archetypes -3
	Systems Archetypes�Systems Archetypes -4
	Conclusions and Summary �Uses of System Archetypes
	Slide Number 33
	Acquisition Archetypes�What are Acquisition Archetypes?
	Acquisition Archetypes�Acquisition Archetypes -1
	Systems Archetypes�“Fixes That Fail”
	Acquisition Archetypes�“Happy Path Testing” (i.e., Sacrificing Quality)
	Acquisition Archetypes�“Firefighting”
	Acquisition Archetypes�Acquisition Archetypes -2
	Systems Archetypes�“Shifting the Burden”
	Acquisition Archetypes�“Bow Wave Effect”
	Acquisition Archetypes�Acquisition Archetypes -3
	Acquisition Archetypes�Acquisition Archetypes -4
	Acquisition Archetypes�Did You Ever Wonder…
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Acquisition Dynamics�Joint Programs
	Acquisition Dynamics �Research Approach -1
	Acquisition Dynamics�Research Approach -2
	Slide Number 51
	Acquisition Dynamics�The Evolution of a �“Science Project”
	The Evolution of a Science Project�The Evolution of a “Science Project”
	The Evolution of a Science Project�The Evolution of a “Science Project”
	Slide Number 55
	The Evolution of a Science Project�Assumption
	The Evolution of a Science Project�Key Preliminary Findings -1
	The Evolution of a Science Project�The Tipping Point in Evolution of a Science Project
	The Evolution of a Science Project�Key Preliminary Findings -2
	The Evolution of a Science Project�Key Preliminary Findings -3
	The Evolution of a Science Project�Key Preliminary Findings -4
	The Evolution of a Science Project�Key Preliminary Findings -5
	The Evolution of a Science Project�Full Simulation Model: The SP Sector
	The Evolution of a Science Project�Full Simulation Model: The PD Sector
	Slide Number 65
	The Evolution of a Science Project�Summary
	Slide Number 67
	Learning Games for Acquisition�Why Learning Games?
	Learning Games for Acquisition�“Firefighting” Interactive Simulation
	Learning Games for Acquisition�“Bow Wave Effect” Interactive Game
	Slide Number 71
	Breaking the Pattern�Managing the Acquisition Archetypes -1
	Breaking the Pattern �Managing the Acquisition Archetypes -2
	Breaking the Pattern�Managing “Firefighting”
	Breaking the Pattern�Managing “PMO vs. Contractor Hostility”
	Slide Number 76
	Breaking the Pattern�Solving Social Dilemmas -1
	Breaking the Pattern�Solving Social Dilemmas -2
	Breaking the Pattern�Solving Social Dilemmas -3
	Breaking the Pattern�Solving Social Dilemmas -4
	Breaking the Pattern�Solving Social Dilemmas -5
	Breaking the Pattern�Solving Social Dilemmas -6
	Breaking the Pattern�Sample Solutions to “Freeriding”
	Slide Number 84
	Summary and Conclusions�The Big Ideas -1
	Summary and Conclusions�The Big Ideas -2
	Summary and Conclusions�The Big Ideas -3
	Summary and Conclusions�For Additional Information
	Summary and Conclusions�Joint Program Acquisition Experience Wanted!
	Slide Number 90
	Slide Number 91

